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We present a two-dimensional~2D! generalization of the stabilized Kuramoto-Sivashinsky system, based on
the Kadomtsev-Petviashvili~KP! equation including dissipation of the generic@Newell-Whitehead-Segel
~NWS!# type and gain. The system directly applies to the description of gravity-capillary waves on the surface
of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer’s surface. Actually,
the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D
dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer
fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D
model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather
than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms.
The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main
KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus
opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the
dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the
existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and
making use of the balance equation for the field momentum, we find that the equilibrium between the gain and
losses may select two steady-state solitons from their continuous family existing in the absence of the dissi-
pative terms~the latter family is found in an exact analytical form, and is numerically demonstrated to be
stable!. The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely
corroborate the analytical predictions, for both the physical and phenomenological models.

DOI: 10.1103/PhysRevE.66.056311 PACS number~s!: 05.45.Yv, 46.15.Ff
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I. INTRODUCTION AND DERIVATION OF THE MODEL

Localized structures, such as solitary pulses~SPs!, play a
dominant role in many conservative and dissipative non
ear physical systems. As is commonly known, in conser
tive systems SPs are supported by a balance between no
earity and dispersion@1#, while in dissipative models, such a
the Ginzburg-Landau equations, it must be supplemente
the balance between losses and gain@2#.

An important example of a one-dimensional~1D! model
that combines conservative and dissipative effects is a m
Kuramoto-Sivashinsky~KS!—Korteweg–de Vries ~KdV!
equation, which was first introduced by Benney@3# and is
therefore also called the Benney equation. This equa
finds various applications in plasma physics, hydrodynam
and other fields@4,5#. SPs are, obviously, important objec
in systems of this type@6#; however, they cannot be com
pletely stable objects in the Benney equation, as the z
solution, which is a background on top of which SPs are
be found, is linearly unstable in this equation due to
presence of the linear gain~however, if the dispersion part o
the Benney equation is large enough, the growing pertu
tion, moving at its group velocity, does not actually overl
with the SP and therefore does not destroy it; see Refs@7#
1063-651X/2002/66~5!/056311~10!/$20.00 66 0563
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and references therein!. A stabilized version of the Benne
equation was recently proposed in Ref.@8#. It is based on the
KS-KdV equation for a real wave fieldu(x,t), which is lin-
early coupled to an additional linear equation of the diffusi
type for an extra real fieldv(x,t), which provides for the
stabilization of the zero background:

ut1uux1uxxx2vx52auxx2guxxxx, ~1!

v t1cvx2ux5Gvxx . ~2!

Here, a, g, and G are coefficients accounting for the ga
and loss in theu subsystem and loss in thev subsystem,
respectively, andc is a group-velocity mismatch between th
fields.

It was shown both analytically~by means of the perturba
tion theory! and numerically in Ref.@8# that the system~1!,
~2! gives rise to a completely stable SP, as well as to sta
bound states of SPs, in a broad parametric region. As a m
ter of fact, Eqs.~1! and~2! furnish an example of a model o
the KS type that gives rise to fully stable pulses, and they
be easily observed in experiment~see a detailed discussio
©2002 The American Physical Society11-1
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of physical realizations of the model—first of all, in terms
liquid films flowing down under the action of gravity—in th
following section!.

The liquid films and other systems in which the obser
tion of stable SPs is expected~e.g., double-front flames, se
below! are 2D media, therefore a relevant issue is to int
duce a physically meaningful 2D version of Eqs.~1! and~2!
and seek for stable 2D pulses in the generalized model.
is the objective of the present work. It will be demonstrat
that the 2D model which will be derived here is a gene
one for a number of different applications. The results w
directly point at a type of 2D pulses that can be obser
experimentally in a straightforward way. Besides that, a p
sibility of the existence of stable 2D pulses may help
understand the phenomenon of turbulent spots; see,
Refs.@9# and references therein.

The paper is organized as follows. The 2D model is
rived in detail in Sec. II, starting with a particular physic
problem, viz., a downflowing liquid film carrying a surfac
tant, and then proceeding to the generic form of the mo
Parallel to the derived model, we will also consider its cou
terpart, which differs by the form of 2D dissipative terms,
order to demonstrate that basic results are insensitive to
particular features of the model~which is relevant to show
even if the model is generic!. In Sec. III, we consider the
stability of the zero solution in the 2D model, which, as w
as in the 1D case, is a necessary condition for the full sta
ity of SPs. In Sec. IV, an analytical perturbation theory f
SPs is developed by treating the gain and loss constan
small parameters. To this end, a family of exact 2D soli
solutions of the zero-order system~the one without the gain
and loss terms! is obtained, following the pattern of the wel
known ‘‘lump’’ solitons of the Kadomtsev-Petviashvili-
~KP-I! equation. Then, using the balance equation for the
field momentum, similar to how it was done in the 1D mod
@8#, we demonstrate that the combination of the gain and
terms may select two~or no! stationary pulses out of th
continuous soliton family existing in the zero-order syste
in the case when two stationary pulses are found, it is v
plausible that the one with the larger value of its amplitude
stable. In Sec. V, we present results of direct numerical sim
lations of the full 2D model, which completely confirm th
analytical predictions, i.e., the existence of stable 2D loc
ized SPs. The paper is concluded by Sec. VI.

II. THE MODEL

The physical meaning of the model based on Eqs.~1! and
~2!, and its 2D generalization developed below, can be
derstood in terms of a particular application to a thin dow
flowing liquid layer with a surfactant trapped on its surfac
As is well established~see a review@5#!, in the 1D case the
evolution of the flow velocity fieldu(x,t) in the layer is
governed, in appropriately chosen units, by the KS-K
~Benney! equationut1uux1uxxx52auxx2guxxxx. In this
equation, the gaina is induced by gravity, and the loss pa
rameterg is proportional to the fluid’s viscosity coefficien
while the left-hand side is generated by Euler’s equati
05631
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~for an irrotational flow!, exactly the same way as in th
classical derivation of the KdV equation. If the surfactant
distributed on the surface of the layer with a densityc
1v(x,t), wherec and v are, respectively, its constant an
small variable parts (uvu!c), the gradient ofv creates,
through the variation of the surface tension, an additio
force ;vx which drives the flow, hence the Euler equatio
adds the termvx to the right-hand side of the KS-KdV equa
tion ~the coefficient in front of this term may be scaled to
1), so that the equation takes precisely the form~1!. Further,
the evolution of the surfactant density is governed by
obvious advection-diffusion equation:v t1@u(c1v)#x
5Gvxx , whereG is the surface diffusion constant. With re
gard to the conditionuvu!c, the latter equation takes th
form ~2!.

In the 2D case, we consider a quasi-1D~weakly 2D! flow
of the film, with they scale much larger than that along thex
axis. In other words, if the wave is taken as exp(iKx1iQy),
the small wave numbers are ordered so that

Q;K2. ~3!

Then, according to the classical derivation@10#, the KdV part
of Eq. ~1! is replaced either by the KP-I equation,

~ut1uux1uxxx!x5uyy , ~4!

or by the KP-II equation, which is

~ut1uux1uxxx!x52uyy , ~5!

the coordinatey being properly rescaled. The choice betwe
Eqs.~4! and ~5! is determined by the sign of the 2D corre
tion to the dispersion; in particular, the capillarity gives ri
to the KP-I equation. The difference between the KP-I a
KP-II equations is that, although both of them have quasi-
~i.e.,y-independent! soliton solutions that reduce to the usu
KdV solitons, only in the KP-II equation this soliton is stab
againsty-dependent perturbations. On the other hand,
KP-I equation has stable 2D solitons~the so-called
‘‘lumps’’ !, which are weakly~nonexponentially! localized in
bothx andy, see below; the KP-II equation does not have 2
solitons.

The next step is to accordingly generalize, for the 2
situation, the dissipative term in Eq.~1!. Dissipative gener-
alizations of the KP equations were introduced in so
works, see, e.g., Refs.@11#. Those generalizations follow th
pattern of the arrangement of the KP equations proper: if
starts from a corresponding 1D equation containing diss
tive terms @for instance, Eq.~1!#, which is written as
something50, its 2D counterpart is (something)x56uyy .
The accordingly modified equations~1! and~2! then take the
form

~ut1uux1uxxx2vx1auxx1guxxxx!x56uyy , ~6!

~v t1cvx2ux2Gvxx!x56vyy . ~7!

The second equation in this system can be simplified, as
usual ordering of the partial derivatives, adopted in course
the quasi-1D derivation@10#, implies that vyy is a small
1-2
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STABLE TWO-DIMENSIONAL SOLITARY PULSES IN . . . PHYSICAL REVIEW E66, 056311 ~2002!
quantity of a higher order thanvxxx; hencevyy may be
dropped, so that Eq.~7! remains one dimensional. As a re
sult, this version of the 2D system takes the form

~ut1uux1uxxx2vx1auxx1guxxxx!x56uyy , ~8!

v t1cvx2ux2Gvxx50. ~9!

However, while keeping Eq.~9! in the 1D form is quite
acceptable, the way the dissipative and gain terms in Eq~8!
were made two dimensional was formal, not being based
any physical argument. Moreover, it will be shown in t
following section that, unlike its 1D counterparts~1! and~2!,
this 2D model cannot produce any stable solitary pulses
its zero solution is always unstable.

In order to derive a physically relevant form of the dis
pative part of theu equation, one should resort to the sta
dard procedure that derives agenericset of dissipative terms
in the quasi-1D situation~in the context of convective flows!
in the Newell-Whitehead-Segel~NWS! equation@12#. This
equation gives a simple prescription, which, as in the
equations, is based on the ordering~3! of the longitudinal
and transverse wave numbers: the longitudinal dissipa
termguxxxx must be supplemented by its transverse coun
part guyy @the scaling of the transverse coordinatey in the
NWS equation is precisely the same, which casts the
equation in the standard form~4! or ~5!; the identity of the
scalings is not accidental, being a consequence of the
that both KP and NWS equations are generic ones in
quasi-1D geometry, the former one in the class of dispers
equations, and the latter among dissipative equations#. Thus,
the proper form of the 2D system is

~ut1uux1uxxx2vx1auxx1guxxxx2guyy!x56uyy ,
~10!

v t1cvx2ux2Gvxx50. ~11!

In fact, exactly the same combination of dissipative terms
in Eq. ~10! has been derived earlier in asymptotic equatio
governing nonlinear waves on thin downflowing liquid film
@13,14# and in two-fluid flows@15#.

Note that Eqs.~10! and~11! do not contain any additiona
free parameter in comparison with the 1D system~1!, ~2!. As
a matter of fact, this is another consequence of the fact
both the dispersive and dissipative parts of the system w
derived for the generic quasi-1D case.

A special form of a 2D quasi-isotropic~rather than quasi-
1D! generalization of the Benney equation was also deriv
which, for instance, describes Rossby waves in a rota
atmosphere@16# ~see also Refs.@13,14#!:

ut1uux1Dux1auxx1gD2u50, ~12!

where D[]x
21]y

2 , henceD2 in Eq. ~12! is a fourth-order
isotropic dissipative operator. Following the pattern of E
~12!, a quasi-isotropic generalization of Eqs.~1! and~2! may
be introduced, replacing the termuxxxx in Eq. ~8! by D2,
which leads to a system

~ut1uux1uxxx2vx1auxx1gD2u!x56uyy , ~13!
05631
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v t1cvx2ux2Gvxx50. ~14!

Note that all the 2D systems introduced above conserve
‘‘masses,’’

M5E
2`

1`E
2`

1`

u~x,y!dx dy, N5E
2`

1`E
2`

1`

v~x,y!dx dy

~15!

~which indeed have the meaning of masses in the applica
to liquid-film flows, in the cases of both the single layer wi
surfactant and two layers with the lower one dominated
viscosity!.

Thus, Eqs.~10! and ~11! can be derived in a consisten
way as a system describing the downflow of a liquid visco
film carrying a surfactant. Actually, the derivation outline
above clearly suggests that this model is a generic one
weakly 2D systems combining dispersion, gain, and visc
ity. In particular, a derivation involving more technicalitie
and following the lines of Ref.@5# shows that the same
model applies to a downflow of a two-layered liquid film
the case when the substrate layer is dominated by visco
A physically different example may be a double-front flam
propagating in a combustible gaseous mixture, in the w
studied case when the combustion involves two consecu
reactions~see Refs.@17# and references therein!. In the case
when a single-flame front is unstable, it is well known th
its evolution is governed by the KS equation proper@18#. It
is also known that a situation with one front stable and o
unstable is possible, which is described by a linearly coup
system, consisting of a KS equation and the one tantamo
to Eq. ~13!. Dispersion, which is missing in the KS equatio
proper, can be induced by a background shear flow tange
the flame@19#, but a detailed derivation of the full model fo
this case is beyond the scope of this work.

As concerns the model~13!, ~14!, we consider it as a
semiphenomenological one, that may apply to cases wh
are ‘‘more isotropic’’ than those obeying the condition~3!.
We will study this model parallel to the physical one, Eq
~10!, ~11!, in order to see if qualitative results are sensitive
the details of a given model. Accordingly, the systems~10!,
~11! and~13!, ~14! will be referred to below as physical an
phenomenological ones, respectively. In the analysis p
sented in the later sections, we focus on the case of the K
type, i.e., with the upper sign in Eqs.~8!, ~10!, and~13!, as
only in this case one may expect the existence of nontri
2D pulses, while the models of the KP-II type may on
extend the SP found in Ref.@8# into a quasi-1D
(y-independent! pulse in two dimensions.

III. THE STABILITY OF THE ZERO SOLUTION

As previously mentioned, completely stable SPs can o
exist in a system whose trivial solution,u5v50, is stable,
therefore our first objective is to analyze this necessary
bility condition. We substitute into the corresponding linea
ized equations a 2D perturbation in the formu;exp(ikx
1iqy1lt), v;exp(ikx1iqy1lt), wherek andq are arbitrary
real wave numbers of the perturbation, andl is the corre-
1-3
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sponding instability growth rate@note that, as all the equa
tions that we are going to consider are written in the sca
form, k andq are not assumed to be specially small, unlikeK
andQ in Eq. ~3!#. This leads to a linearized dispersion equ
tion

@k~l2 ik32ak21gk4!2 iq2#~l1 ick1Gk2!1k350
~16!

for the formal model~8!, ~9!, or

@k$l2 ik32ak21g~k21q2!2%2 iq2#~l1 ick1Gk2!1k3

50 ~17!

for the phenomenological model~13!, ~14!, or

@k$l2 ik32ak21g~k41q2!%2 iq2#~l1 ick1Gk2!1k3

50 ~18!

for the physical model~10!, ~11!. The stability condition
states that both solutions of the quadratic equations~16!,
~17!, or ~18! must satisfy the inequality

Re@l~k,q!#<0 ~19!

at all the real values ofk andq.
As it was already mentioned, the zero solution in the f

mal model~8!, ~9! is always unstable, which can be shown
follows: in the case whenk is small, whileq is ;O(1), the
two roots of Eq.~16! can be expanded as

l1~k!52 ick2Gk21•••, l25 iq2/k1ak21•••.
~20!

Obviously, the second root in Eq.~20! yields instability.
The zero solution may be stable in the physical and p

nomenological models. Although the direct check of the c
dition ~19! for Eqs.~17! and~18! at all real values ofk andq
with the four free parameters is a formidable algebraic pr
lem, it is possible to link the stability condition for the phys
cal system to that which was studied in detail for the
system ~1!, ~2! in Ref. @8#. An algebraic transformation
shows that, if the condition Re@l(k)#<0 holds at all real
values of k in Eq. ~8! of Ref. @8#, then the inequality
Re@l(k,q)#<0 is true at all real values ofk and q in Eq.
~18!, or, in other words, the stability of the zero solution
the 1D case guarantees its stability in the 2D case for
physical model. However, rather than following formal alg
bra, it is easier to understand this result from Fig. 1, wh
shows a 3D plot of the instability growth rate Rel vs k and
q for a set of typical values of the parameters. Obvious
when k is large, the stability is secured by the higher-ord
dissipative term in Eq.~10!. The most dangerous case is th
whenk andq are relatively small. It can be seen from Fig.
that the growth rate, considered as a function ofq, attains its
maximum value atq50 if k is very small. Ask increases,
two additional local maxima of the growth rate appear
nonzeroq, and they may be greater than the local maxim
at q50. However, since the local maximum atq50 be-
comes more negative ask increases, the two side maxim
05631
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remain negative too. Thus, the zero solution to Eqs.~10! and
~11! is stable in the same parameter region in which it w
found to be stable in the 1D system~1!, ~2! in Ref. @8#.

In the phenomenological model, the zero solution is a
stable in a certain parametric region. However, no sim
relation of the stability condition to that in the 1D system c
be found in this model.

IV. THE PERTURBATION THEORY FOR
TWO-DIMENSIONAL SOLITARY PULSES

Both the physical and phenomenological models red
to a zero-order system by settinga5g5G50, while keep-
ing an arbitrary value ofc. This zero-order system is conse
vative, consisting of the KP-I equation coupled to an ex
linear one,

~ut1uux1uxxx2vx!x5uyy , v t1cvx5ux . ~21!

Looking for a solution to Eqs.~21! in the form of a soliton
traveling at a constant velocitys in the x direction, so that

u~x,y,t !5u~j,y!,v~x,y,t !5v~j,y! with j[x2st,
~22!

we immediately conclude that, as in the 1D case, for suc
solution we have

v~j,y!5~c2s!21u~j,y!. ~23!

With regard to the relation~23!, an exact solution to Eqs.
~21! giving a 2D weakly localized soliton~‘‘lump’’ ! is

u~j,y!5
24~11cs2s2!

c2s
w~z,z!, ~24!

where

z[
11cs2s2

c2s
y, z[A11cs2s2

c2s
j,

FIG. 1. The instability growth rate Rel for the zero solution in
the physical model@Eqs. ~10! and ~11!# vs the longitudinal and
transverse perturbation wave numbersk and q. The values of the
parameters area50.2, g50.05, c521.0, andG50.55.
1-4
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FIG. 2. An example of the inelastic collision between two stable lump-type solitons with different velocities, simulated with
framework of the zero-order conservative system~21! with c50. Theu andv fields prior to the collision~at t50) are shown in panels~a!
and ~b!, and after the collision~at t540), in panels~c! and ~d!. The initial velocities of the two solitons ares152.0 ands2520.8.
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z22z213

@z21z213#2
. ~25!

This solution exists in the case

11cs2s2

c2s
.0. ~26!

Note that, in contrast to the lump soliton solutions of t
KP-I equation proper, which may only have positive velo
ties, the solitons~24! may also move in the negative dire
tion, provided that the velocity satisfies the condition~26!. In
the particular casec50, this condition means that eithers
.1, or 21,s,0.

We have checked by direct simulations of Eqs.~21! that
all the lump-type SP solutions are stable within the fram
work of the unperturbed equations~21!. We have also simu-
lated catch-up and head-on collisions between two lu
pulses with different velocities. The results clearly show t
the collisions areinelastic; hence, contrary to the KP-I equa
tion, the conservative system~21! is not an exactly integrable
one. An example of the head-on collision between two lum
type SPs with velocitiess52.0 ands520.8 is shown in Fig.
2. The inelastic character of the interaction is obvious.

In fact, the collision shown in Fig. 2 is not quite gener
as it is generated by an initial configuration in which t
massN of the v component, see Eq.~15!, is almost zero (N
vanishes exactly if the initial velocity of the second soliton
20.756 instead of20.8, which is the case in Fig. 2!. In this
case, a resonance probably occurs, resulting in the gener
of an additional pair of solitons, which is suggested by Fig
05631
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@especially, by panel 2~d!#. Far from this resonant case,
typical collision ~see an example in Fig. 3! is also strongly
inelastic, but in this case the result may be regarded, in
first approximation, as the fusion of two solitons into one

To check the accuracy of the results produced by the
rect simulations of the 2D equations, including those d
played in Figs. 2 and 3 and in the following section, t
simulations were repeated with the number of points incre
ing. For instance, Figs. 2 and 3 were obtained in a 2D
main of 2563256 points; repeating the same simulatio
with 5123512 points, we had obtained the same pictur
without any visible difference.

Next, we restore the terms with the coefficientsa, g, and
G as small perturbations, with the aim to predict, at the fi
order of the perturbation theory, which solutions will be s
lected from the family of the lump solitons~24! found in the
zero-order system~21!. As it is suggested by the analysis o
the 1D system@8#, it is convenient to choose the relativ
velocity, d[c2s, as a parameter of the family.

As in the 1D case, we select stationary pulses, using
balance condition for the net field momentum,

P5
1

2E2`

1`

dxE
2`

1`

dy@u2~x,y!1v2~x,y!#, ~27!

which is a dynamical invariant of the conservative~zero-
order! system@the masses~15! cannot be used for this pur
pose, as they remain dynamical invariants in the full dissi
tive models#. The dissipative and gain terms give rise to t
following exact balance equations for the momentum:
1-5
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FIG. 3. The inelastic collision in the conservative system~21! with c50 in the case when the initial velocities of the two solitons a
s152.0 ands2520.5. The panels have the same meaning as in Fig. 2, with a difference that the final state is displayed att545.
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5E

2`

1`

dxE
2`

1`

dy@aux
22g~uxx

2 1uy
2!2Gvx

2# ~28!

in the physical system~10!, ~11!, and

dP

dt
5E

2`

1`

dxE
2`

1`

dy@aux
22g~uxx1uyy!

22Gvx
2# ~29!

in the phenomenological system~13!, ~14!.
Substituting the unperturbed exact solution~24! into the

equilibrium conditiondP/dt50, which follows from Eq.
~28! or ~29!, we cast the equilibrium condition in the form

C1S a2
G

d2D S c2d1
1

d D2C2S c2d1
1

d D 2

50, ~30!

where, for both the physical and phenomenological syste

C1[E
2`

1`

dzE
2`

1`

dzS ]w

]z D 2

, ~31!

and the constantC2 is defined differently for the two models

C2
(phys)5E

2`

1`

dzE
2`

1`

dzF S ]2w

]z2 D 2

1S ]w

]z D 2G , ~32!

C2
(phen)5E

2`

1`

dzE
2`

1`

dzS ]2w

]z2
1

]2w

]z2 D 2

. ~33!

Numerical computation of the integrals yieldsC1

50.34708, C2
(phys)50.75984, andC2

(phen)50.85770. Then,
05631
s,

the equilibrium equation~30! yields the following cubic
equation ford ~whereã[a/g, G̃[G/g):

d31~0.46ã2c!d22d20.46G̃50, ~34!

d31~0.41ã2c!d22d20.41G̃50, ~35!

for the physical and phenomenological models, respectiv
Note that these equations have the same general form a
one that selects equilibrium values of the parameterd in the
1D system investigated in Ref.@8#.

Physical roots of Eq.~34! or ~35! are defined as thos
which are not only real, but also satisfy the condition~26!.
The physical roots select particular lump-type SPs, from
family of lump solitons of the zero-order system, which r
main steady pulses in the presence of the perturbations. A
the 1D model, the existence of at least two physical root
necessary for one pulse to be stable~the other one, with a
smaller value of the amplitude, is then automatically u
stable! @8#. A numerical solution of Eqs.~34! and ~35! veri-
fies that both equations have exactly two physical roots i
broad parametric region, while three physical roots can ne
be found. Interestingly, the velocities corresponding to th
two physical roots are both positive, i.e., a stable lump
cannot move in the negativex direction.

Regions in the parameter plane (a,G) in which exactly
two physical roots have been found are shown, forg
50.05, in Figs. 4 and 5 for the physical model, withc50
andc521, respectively, and in Fig. 6 for the phenomen
logical model withc521. These regions are bounded b
two solid lines in Figs. 4–6. Beneath the lower solid lin
Eq. ~34! or ~35! has three real roots, but no more than one
1-6
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STABLE TWO-DIMENSIONAL SOLITARY PULSES IN . . . PHYSICAL REVIEW E66, 056311 ~2002!
them is physical, and above the upper solid line, two phy
cal roots bifurcate into a pair of complex ones, leaving
physical roots.

The dashed line is the border above which the zero s
tion is stable in the 1D model~1!, ~2!, hence it is also stable
in the 2D physical model, according to the results reporte
the preceding section. As seen in Fig. 4, in the param
plane (a,G) of the physical system withc50, there is no
overlapping between regions where the zero solution
stable, and where the perturbation theory selects two ph
cal solutions for the 2D pulses, but a narrow overlapp
region is found in the same model forc521, see Fig. 5. It
is expected that stable lump-type SPs exist inside this nar
region, which is confirmed by direct simulations, as repor

FIG. 4. The stability region of the zero solution, and the reg
inside which two physical roots exist for Eq.~34! with g50.05 and
c50. The zero solution is stable above the dashed line, and in
the region bounded by two solid lines, Eq.~34! produces two physi-
cal solutions.

FIG. 5. The expected stability region for the solitary pulses
the parametric plane (a,G) for g50.05 andc521.0. The solid
and dashed lines have the same meaning as in Fig. 4.
05631
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in the following section. Despite the absence of an overl
ping region in Fig. 6, we have to check the condition~26! for
Eq. ~17!, i.e., the stability of the zero solution in the phenom
enological model, point by point, since the stability of th
zero solution in the 1D model does not guarantee the sta
ity of the zero solution in the phenomenological system,
the preceding section.

The same analysis can be performed for values of the
parameterg other than 0.05, which was fixed in the abo
consideration. The results show that the variation ofg pro-
duces little change in terms of the expected SP stability
gion. On the other hand, the group-velocity mismatchc af-
fects the stability region significantly. We had numerica
found that there is no stability region in both the physical a
phenomenological model forc>0. Then, by inspecting the
region of negativec, it was found that there is a critical valu
ccr such that stable pulses become possible forc,ccr . In the
physical model,ccr'20.8.

To conclude the analytical consideration, it is necessar
stress that the stability conditions obtained here are only n
essary ones. Obtaining a full set of sufficient stability con
tions might be possible within the framework of a rigoro
spectral analysis of the full system linearized around
pulse solution, which was done~in a numerical form! for the
1D Benney~KS-KdV! equation in Refs.@7#. Extending this
analysis to the two-component 2D case is an extremely
ficult problem, which is beyond the scope of the pres
work. Nevertheless, numerical results reported in the follo
ing section strongly suggest that the necessary stability c
ditions, which were obtained above by means of the sim
analytical methods, are, most probably, sufficient for the s
bility of the 2D pulses.

V. DIRECT SIMULATIONS OF THE TWO-DIMENSIONAL
SOLITARY PULSES

To check the predictions made by the above analysis
both the physical and phenomenological models, via dir

de

FIG. 6. The stability region of the zero solution of the 1D mod
~1!, ~2! and the region inside which two physical roots exist for E
~35! wheng50.05 andc521. The solid and dashed lines have th
same meaning as in Fig. 4.
1-7
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FENG, MALOMED, AND KAWAHARA PHYSICAL REVIEW E 66, 056311 ~2002!
numerical simulations, we have upgraded the implicit ps
dospectral scheme, which was developed previously for
1D model ~1!, ~2! ~see Appendix in Ref.@8#!, to a scheme
capable of dealing with 2D models. It it relevant to menti
that results obtained with a rather coarse grid,Dx5Dy
50.5, and relatively large time steps,Dt50.1, remained vir-
tually unchanged if reproduced with an essentially finer g
and smaller time step. The initial conditions were taken
the lump-soliton solutions of the zero-order system, but w
arbitrarily modified values of the amplitude, in order
check whether strongly perturbed pulses relax to stable o
i.e., whether the stable pulses areattractors.

Collecting data produced by the systematic simulations
has been found that, for the physical model, stable lump-t
SPs do exist and are stableeverywhereinside the stability
region in the (a,G) parameter plane, which was predicted
the analytical perturbation theory, see Fig. 5. Moreover,
the stable pulses were found to be strong attractors indee
typical lump-type SP witha50.2, g50.05, c521.0, and
G50.55 is displayed in Fig. 7. The initial-state pulses s
lected as mentioned above definitely relax to this single
tionary lump-type SP, provided that the initial amplitudeA0
of their u component exceeds 1.5. For instance, starting w
the initial amplitudesA051.96 andA0513.33 @the corre-
sponding values of the unperturbed solitons’ velocity ares0
50.8 ands052.0, see Eq.~24!#, a lump-type SP develop
with the values of the amplitudeAnum57.11 and Anum
57.16, and velocitiessnum51.32 andsnum51.33, respec-
tively, by the timet5400. Meanwhile, the analytical predic
tion for the amplitude and velocity of the presumably sta

FIG. 7. A stable lump-type solitary pulse in the physical mod
found as a result of long numerically simulated evolution in t
casea50.2, g50.05, c521.0, andG50.55. The panels~a! and
~b! show established shapes of theu andv fields, respectively.
05631
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pulse, given by Eq.~34! for the same values of the param
eters, isAanal'7.38 andsanal'1.35. Thus, the numerical re
sults match the theoretical prediction well.

On the other hand, if the initial amplitude is too sma
e.g.,A050.89 (s050.7), the pulse decays to zero, which
natural too, as the stable zero solution has its own attrac
basin. Note that for the second~smaller! steady-state pulse
which is expected to play the role of the separatrix betwe
the attraction basins of the stable pulse and zero solution
perturbation theory predicts, in the same case, the ampli
Ãanal'1.26, so it seems quite natural that the initial puls
with A051.96 andA050.89 relax, respectively, to the stab
pulse and to zero.

For the phenomenological model, no definite stability
gion for the pulses has been found above; instead, the st
ity of the zero solution at each point inside the regi
bounded by the solid lines in Fig. 6 should be checked se
rately. For instance, the zero solution is found to be stabl
the parameter point (a50.2, G50.55) in Fig. 6. At this
point, the two physical roots of Eq.~35! are 2.073 and 1.786
The amplitudes of the corresponding solitons predicted
the perturbation theory areÃanal'4.72 andÃanal'1.81, re-
spectively; the one with the larger amplitude may be sta
according to the general principle formulated above. Sim
lations demonstrate that, indeed, there is a stable 2D p
with a shape very close to the predicted one, all the ini
states in the form of the conservative-model lump, who
amplitude exceeds 2.0, relaxing to this stable SP. Figur
shows the shapes of theu andv components of the SP att
5400, generated by the initial configuration taken as

, FIG. 8. A stable lump-type solitary pulse in the phenomenolo
cal model, found the same way as the pulse shown in Fig. 7 for
same values of the parameters. The panels~a! and~b! have the same
meaning as in Fig. 7.
1-8
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STABLE TWO-DIMENSIONAL SOLITARY PULSES IN . . . PHYSICAL REVIEW E66, 056311 ~2002!
soliton of the zero-order system~21! with the amplitude
13.33. The amplitude of the thus obtainedu components is
about 5.14, the discrepancy with the analytical predict
being less than 9%.

It was also found that all the initial lump pulses who
amplitude is less than 1.6 decay to zero. This fact comp
well with the expectation that the second~smaller-amplitude!
steady-state pulse, predicted by the perturbation the
whose amplitude is 1.81, ought to be the separatrix betw
the attraction basins of the stable pulse and zero solutio
the phenomenological system.

The simulations also show that, even if the zero ba
ground is unstable, lump-type SPs may be quite stable w
the integration domain~supplemented by periodic bounda
conditions in bothx andy) is not very large. An explanation
given in Ref.@8# for a similar ‘‘overstability’’ effect found in
the 1D model, which is based on the suppression of nas
perturbations by the pulse periodically traveling around
domain, applies to the 2D case as well.

Numerical simulations of interactions between two
more stable lump-type SPs were also carried out. Unlike
1D system~1!, ~2!, in which stable bound states of two an
three pulses were easily found@8# ~and unlike a physically
relevant 2D model of a different type, which follows th
pattern of the Zakharov-Kuznetsov equation@20# and will be
considered elsewhere!, bound states of pulses havenot been
found in both the physical and phenomenological syste
based on the KP-I equation. Actually, this fact may be ben
for the experimental observation of the 2D pulses, as th
will be no competition with multihumped structures th
might render the picture much more complex.

VI. CONCLUSION

In this work, we have extended the 1D stabiliz
Kuramoto-Sivashinsky system to the 2D case. The 2D mo
th

.

,

D
,
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is, quite naturally, based on the Kadomtsev-Petviashvili~KP!
equation supplemented by loss and gain terms. A model w
the dissipative terms of the Newell-Whitehead-Segel ty
was derived in a consistent way for the weakly 2D case. T
derivation was outlined for a particular physical system
downflowing liquid film carrying a surfactant that diffuse
along its surface. It was argued that, in fact, the deriv
model is generic, therefore it also applies, for instance, to
description of interfacial waves in a two-layered flowing fil
and double-front flames in a gaseous mixture. Anot
model, which may apply to a more isotropic situation, w
put forward as a semiphenomenological one. Both mod
consist of the generalized KP-I equation with gain and lo
terms linearly coupled to an extra equation of the advecti
diffusion type. The additional linear equation stabilizes t
system’s zero solution, thus paving the way to the existe
of completely stable 2D localized solitary pulses, which a
objects of an obvious physical interest. Treating the los
and gain as small perturbations, and employing the bala
equation for the net field momentum, we have found that
condition of the equilibrium between the losses and gain m
select two steady-state 2D solitons from their continuo
family, which was found, in an exact analytical form, in th
absence of the loss and gain~the exact solitons are similar t
the ‘‘lump’’ solutions of the KP-I equation!. When the zero
solution is stable and, simultaneously, two lump-type pul
are picked up by the balance equation for the momentum,
pulse with the larger value of amplitude is expected to
stable in the infinitely long system, while the other pul
must be unstable, playing the role of a separatrix between
attraction domains of the stable pulse and zero solut
These predictions have been completely confirmed by di
simulations for both the physical and phenomenological s
tems. Another noteworthy finding is that, unlike their 1
counterpart, both KP-based 2D systems do not gene
stable bound states of pulses.
s.
@1# M.J. Ablowitz and P.A. Clarkson,Solitons, Nonlinear Evolu-
tion Equations and Inverse Scattering~Cambridge University
Press, Cambridge, UK, 1991!.

@2# I.S. Aranson and L. Kramer, Rev. Mod. Phys.74, 99 ~2002!.
@3# D.J. Benney, J. Math. Phys.45, 150 ~1966!.
@4# T. Kawahara and S. Toh, Phys. Fluids28, 1636 ~1985!; in

Pitman Monographs and Surveys in Pure and Applied Ma
ematics Vol. 43: Nonlinear Wave Motion, edited by A. Jeffery
~Pitman, 1989!; C. Elphick, G.R. Ierley, O. Regev, and E.A
Spiegel, Phys. Rev. E44, 1110~1991!; A. Oron and D.A. Ed-
wards, Phys. Fluids A5, 506 ~1993!; C.I. Christov and M.G.
Velarde, Physica D86, 323 ~1995!.

@5# A. Oron, S.H. Davis, and S.G. Bankoff, Rev. Mod. Phys.69,
931 ~1997!.

@6# S. Toh and T. Kawahara, J. Phys. Soc. Jpn.54, 1257 ~1985!;
H.-C. Chang, Phys. Fluids29, 3142~1986!; T. Kawahara and
S. Toh, ibid. 31, 2103 ~1988!; H.-C. Chang, E.A. Demekhin
and D.I. Kopelevich, Phys. Rev. Lett.75, 1747~1995!.

@7# H.-C. Chang, E.A. Demekhin, and D.I. Kopelevich, Physica
97, 353~1996!; H.-C. Chang, E.A. Demekhin, and E. Kalaidin
-

SIAM ~Soc. Ind. Appl. Math.! J. Appl. Math.58, 1246~1998!;
H.-C. Chang and E.A. Demekhin, J. Fluid Mech.380, 233
~1999!.

@8# B.A. Malomed, B.-F. Feng, and T. Kawahara, Phys. Rev. E64,
046304~2001!.

@9# J. Schumacher and B. Erckhardt, Phys. Rev. E63, 046307
~2001!; A. Das and J. Mathew, Comput. Fluids30, 533~2001!.

@10# B.B. Kadomtsev and V.I. Petviashvili, Sov. Phys. Dokl.15,
539 ~1970! @Dokl. Akad. Nauk SSSR192, 753 ~1970!#.

@11# A.A. Nepomnyashchy and M.G. Velarde, Phys. Fluids6, 187
~1994!; G. Huang, M.G. Velarde, and V.N. Kudryavtsev, Phy
Rev. E57, 5473~1998!.

@12# L.A. Segel, J. Fluid Mech.38, 203 ~1969!; A.C. Newell and
J.A. Whitehead,ibid. 38, 279 ~1969!.

@13# J. Topper and T. Kawahara, J. Phys. Soc. Jpn.44, 663 ~1978!;
S. Toh, H. Iwasaki, and T. Kawahara, Phys. Rev. A40, 5472
~1989!.

@14# S. Melkonian and S.A. Maslowe, Physica D34, 255 ~1989!.
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