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We present a two-dimension@D) generalization of the stabilized Kuramoto-Sivashinsky system, based on
the Kadomtsev-PetviashvilKP) equation including dissipation of the genefibewell-Whitehead-Segel
(NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface
of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer’s surface. Actually,
the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D
dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer
fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D
model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather
than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms.
The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main
KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus
opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the
dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the
existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and
making use of the balance equation for the field momentum, we find that the equilibrium between the gain and
losses may select two steady-state solitons from their continuous family existing in the absence of the dissi-
pative terms(the latter family is found in an exact analytical form, and is numerically demonstrated to be
stablg. The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely
corroborate the analytical predictions, for both the physical and phenomenological models.
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I. INTRODUCTION AND DERIVATION OF THE MODEL and references therginA stabilized version of the Benney
equation was recently proposed in Ré. It is based on the
Localized structures, such as solitary pulé8Bs, play a  KS-KdV equation for a real wave field(x,t), which is lin-
dominant role in many conservative and dissipative nonlinearly coupled to an additional linear equation of the diffusion
ear physical systems. As is commonly known, in conservatype for an extra real fiela(x,t), which provides for the
tive systems SPs are supported by a balance between nonligtabilization of the zero background:
earity and dispersiofi], while in dissipative models, such as
the Ginzburg-Landau equations, it must be supplemented by
the balance between losses and d&ih
An important example of a one-dimensior{aD) model
that combin(_es conservative and dissipative effe_zcts is a mixed Vit Coy— Uy=Tvyy. (2
Kuramoto-Sivashinsky(KS)—Korteweg—de Vries(KdV)
equation, which was first introduced by Benné} and is
therefore also called the Benney equation. This equatiohlere, «, v, andI' are coefficients accounting for the gain
finds various applications in plasma physics, hydrodynamicsand loss in theu subsystem and loss in the subsystem,
and other field§4,5]. SPs are, obviously, important objects respectively, and is a group-velocity mismatch between the
in systems of this typ¢6]; however, they cannot be com- fields.
pletely stable objects in the Benney equation, as the zero It was shown both analyticallipy means of the perturba-
solution, which is a background on top of which SPs are tdion theory and numerically in Ref[8] that the systen(l),
be found, is linearly unstable in this equation due to the(2) gives rise to a completely stable SP, as well as to stable
presence of the linear gaihowever, if the dispersion part of bound states of SPs, in a broad parametric region. As a mat-
the Benney equation is large enough, the growing perturbaer of fact, Eqs(1) and(2) furnish an example of a model of
tion, moving at its group velocity, does not actually overlapthe KS type that gives rise to fully stable pulses, and they can
with the SP and therefore does not destroy it; see Réfs. be easily observed in experimefsiee a detailed discussion

Ut UUy T Uyyy— Ux= — @Uyx— YUyyxxs (1)
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of physical realizations of the model—first of all, in terms of (for an irrotational flow, exactly the same way as in the
liguid films flowing down under the action of gravity—in the classical derivation of the KdV equation. If the surfactant is
following section. distributed on the surface of the layer with a density
The liquid films and other systems in which the observa-+v(X,t), wherec andv are, respectively, its constant and
tion of stable SPs is expectéd.g., double-front flames, see small variable parts [¢|<c), the gradient ofv creates,
below) are 2D media, therefore a relevant issue is to introthrough the variation of the surface tension, an additional
duce a physically meaningful 2D version of E¢¥) and(2) ~ force ~v, which drives the flow, hence the Euler equation
and seek for stable 2D pulses in the generalized model. Thdds the termw, to the right-hand side of the KS-KdV equa-
is the objective of the present work. It will be demonstratedtion (the coefficient in front of this term may be scaled to be
that the 2D model which will be derived here is a genericl): SO that the equation takes precisely the fotn Further,
one for a number of different applications. The results willth€ €volution of the surfactant density is governed by an

directly point at a type of 2D pulses that can be observe@Pvious —advection-diffusion —equation:v,+[u(c+v)]y

experimentally in a straightforward way. Besides that, a pos— 1 Vxx» Wherel" is the surface diffusion constant. With re-

sibility of the existence of stable 2D pulses may help togard to the conditiorju|<c, the latter equation takes the

understand the phenomenon of turbulent spots; see, e.dorm (2)- , ,

Refs.[9] and references therein. In th_e 2D case, we consider a quasi-Mzeakly 2D flow
The paper is organized as follows. The 2D model is deOf _the film, with they spale much Iqrger than thgt alolng the

rived in detail in Sec. II, starting with a particular physical 8XiS- In other words, if the wave is taken as eKp(+iQy),

problem, viz., a downflowing liquid film carrying a surfac- the small wave numbers are ordered so that

tant, and then proceeding to the generic form of the model. Q~K?2 &)

Parallel to the derived model, we will also consider its coun- ’

terpart, which differs by the form of 2D dissipative terms, in Then, according to the classical derivat{d®], the KdV part

order to demonstrate that basic results are insensitive to thef Eq. (1) is replaced either by the KP-I equation,

particular features of the modélvhich is relevant to show,

even if the model is genedicin Sec. lll, we consider the (U UUt+ Uy =Uyy, (4)

stability of the zero solution in the 2D model, which, as well ] o

as in the 1D case, is a necessary condition for the full stabilo" by the KP-II equation, which is

ity of SPs. In Sec. IV, an analytical perturbation theory for

SPs is developed by treating the gain and loss constants as

small parameters. To this end, a family of exact 2D solitonhe coordinatey being properly rescaled. The choice between
solutions of the zero-order syste_(rhtne one without the gain - Eqs. (4) and(5) is determined by the sign of the 2D correc-
and loss termsis obtained, following the pattern of the well- tjon to the dispersion; in particular, the capillarity gives rise
known “lump” solitons of the Kadomtsev-Petviashvili-l to the KP-I equation. The difference between the KP-I and
(KP-1) equation. Then, using the balance equation for the nekp.|| equations is that, although both of them have quasi-1D
field momentum, similar to how it was done in the 1D model j e_ y-independentsoliton solutions that reduce to the usual
[8], we demonstrate that the combination of the gain and losg gy solitons, only in the KP-1I equation this soliton is stable
terms may select twgor no) stationary pulses out of the againsty-dependent perturbations. On the other hand, the
continuous soliton family existing in the zero-order system;kp_| equation has stable 2D solitonghe so-called
in the case when two stationary pulses are found, it is Verylumps” ), which are weaklynonexponentiallylocalized in
plausible that the one with the larger value of its amplitude isygth x andy, see below; the KP-Il equation does not have 2D
stable. In Sec. V, we present results of direct numerical simugg|itons.
lations of the full 2D model, which completely confirm the  The next step is to accordingly generalize, for the 2D
gnalytical predictions,_ i.e., the existence of stable 2D localsjtyation, the dissipative term in E{L). Dissipative gener-
ized SPs. The paper is concluded by Sec. VI. alizations of the KP equations were introduced in some
works, see, e.g., RefEl1l]. Those generalizations follow the
pattern of the arrangement of the KP equations proper: if one
Il. THE MODEL starts from a corresponding 1D equation containing dissipa-

. . tive terms [for instance, Eq.(1)], which is written as
The physical meaning of the model based on Efjsand , : . .
(2), and its 2D generalization developed below, can be un_somethmgto, its 2D counterpart is (something) = U,

derstood in terms of a particular application to a thin down-The accordingly modified equatio$) and(2) then take the

(U U+ Uy = —Uyy, (5)

flowing liquid layer with a surfactant trapped on its sun‘ace.form

As is well establishedsee a review5]), in the 1D case the (Ut U+ Uy~ Ut @l YUgeidx=FUyy,  (6)
evolution of the flow velocity fieldu(x,t) in the layer is

governed, in appropriately chosen units, by the KS-KdV (VF Cox— U= T0y0)x= £y, 7)

(Benney equationu;+ U Uy + Uyyy= — @Uyy— YUyyxx- 1N this

equation, the gaimr is induced by gravity, and the loss pa- The second equation in this system can be simplified, as the
rametery is proportional to the fluid’s viscosity coefficient, usual ordering of the partial derivatives, adopted in course of
while the left-hand side is generated by Euler's equationshe quasi-1D derivatiof10], implies thatv,, is a small
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quantity of a higher order than,,,; hencev,, may be vi+cuy—U,—Tv,,=0. (14)
dropped, so that Eq7) remains one dimensional. As a re-
sult, this version of the 2D system takes the form Note that all the 2D systems introduced above conserve two
“masses,”
(UgF Ul + Uy Uy F @l YUyydx= EUyy, ()
+ oo + oo + o0 + 00
vitcuy—Uy—Tv,,=0. 9 MzJ’ f u(x,y)dx dy, N=J J v(x,y)dx dy
However, while keeping Eq9) in the 1D form is quite (15

acceptable, the way the dissipative and gain terms in&q.
were made two dimensional was formal, not being based ofwhich indeed have the meaning of masses in the application
any physical argument. Moreover, it will be shown in the to liquid-film flows, in the cases of both the single layer with
following section that, unlike its 1D counterpatty and(2), surfactant and two layers with the lower one dominated by
this 2D model cannot produce any stable solitary pulses, agScosity.
its zero solution is always unstable. Thus, Egs.(10) and (11) can be derived in a consistent
In order to derive a physically relevant form of the dissi- way as a system describing the downflow of a liquid viscous
pative part of theu equation, one should resort to the stan-film carrying a surfactant. Actually, the derivation outlined
dard procedure that derivegyanericset of dissipative terms above clearly suggests that this model is a generic one for
in the quasi-1D situatiofin the context of convective floys Weakly 2D systems combining dispersion, gain, and viscos-
in the Newell-Whitehead-SegéNWS) equation[12]. This  ity. In particular, a derivation involving more technicalities
equation gives a simple prescription, which, as in the KFand following the lines of Ref[5] shows that the same
equations, is based on the orderif® of the longitudinal model applies to a downflow of a two-layered liquid film in
and transverse wave numbers: the longitudinal dissipativéhe case when the substrate layer is dominated by viscosity.
term yu,,x must be supplemented by its transverse counterA physically different example may be a double-front flame
part yu,, [the scaling of the transverse coordingtén the ~ Propagating in a combustible gaseous mixture, in the well-
NWS equation is precisely the same, which casts the Kmtudied case when the combustion involves two consecutive
equation in the standard forid) or (5); the identity of the reactions(see Refs[17] and references therginin the case
scalings is not accidental, being a consequence of the fatthen a single-flame front is unstable, it is well known that
that both KP and NWS equations are generic ones in th#s evolution is governed by the KS equation propts]. It
quasi-1D geometry, the former one in the class of dispersivés also known that a situation with one front stable and one
equations, and the latter among dissipative equalidiis,  unstable is possible, which is described by a linearly coupled

the proper form of the 2D system is system, consisting of a KS equation and the one tantamount
to Eq.(13). Dispersion, which is missing in the KS equation
(U U+ Uy = Uy @l YUy YUyy) = T Uy, proper, can be induced by a background shear flow tangent to

(10 the flame[19], but a detailed derivation of the full model for
this case is beyond the scope of this work.

vt Coy— U= T'vy=0. (1D As concerns the modd[13), (14), we consider it as a
gemiphenomenological one, that may apply to cases which
are “more isotropic” than those obeying the conditi¢®).
Me will study this model parallel to the physical one, Eqs.
(10), (12), in order to see if qualitative results are sensitive to
the details of a given model. Accordingly, the systei®g),
(11) and(13), (14) will be referred to below as physical and
Eﬁhenomenological ones, respectively. In the analysis pre-
X ented in the later sections, we focus on the case of the KP-I
type, i.e., with the upper sign in Eg&), (10), and(13), as
only in this case one may expect the existence of nontrivial
d2D pulses, while the models of the KP-IlI type may only
xtend the SP found in Ref[8] into a quasi-1D
y-independentpulse in two dimensions.

In fact, exactly the same combination of dissipative terms a
in Eq. (10) has been derived earlier in asymptotic equation
governing nonlinear waves on thin downflowing liquid films
[13,14 and in two-fluid flows[15].

Note that Eqs(10) and(11) do not contain any additional
free parameter in comparison with the 1D systédm (2). As
a matter of fact, this is another consequence of the fact th
both the dispersive and dissipative parts of the system we
derived for the generic quasi-1D case.

A special form of a 2D quasi-isotropicather than quasi-
1D) generalization of the Benney equation was also derive
which, for instance, describes Rossby waves in a rotatin
atmospherg16] (see also Refd.13,14)):

U+ Ul + AU+ aly, + yA2u=0, (12) Ill. THE STABILITY OF THE ZERO SOLUTION

WhereAEg§+ (93, henceA? in Eq. (12) is a fourth-order As previously mentioned, completely stable SPs can only
isotropic dissipative operator. Following the pattern of Eq.8Xist in a system whose trivial solution=v =0, is stable,
(12), a quasi-isotropic generalization of E¢%) and(2) may therefore our first objective is to analyze this necessary sta-

be introduced, replacing the term,., in Eq. (8) by A2, bility condition. We substitute into the corresponding linear-
which leads to a system ized equations a 2D perturbation in the foum-exp{kx

+igy+At), v ~exp(kx+igy+At), wherek andq are arbitrary
(UgF UUy+ Uy yy— Uy Uy + yA2U) = Tuyy, (13 real wave numbers of the perturbation, ands the corre-
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sponding instability growth ratgnote that, as all the equa-
tions that we are going to consider are written in the scaled

: . {7
form, k andq are not assumed to be specially small, unkke ‘,'/ s
andQ in Eg. (3)]. This leads to a linearized dispersion equa- !i’:""“:’éz‘t}f{:
tion of ’9&2’%“{)’2{&'
_ _ _ 3 Q{fo&t,y‘\:“\'l
[K(N—ik3— ak?®+ yk*) —ig?](N+ick+T'k?) +k3=0 ™ ,40%’9,*(\
(16) s “‘ S

for the formal model8), (9), or -mé
[k{\ —ik3— ak?®+ y(k*+ %) 2} —ig?] (A +ick+Tk?) +k®
=0 a7

for the phenomenological modél3), (14), or

[K{A—ik3—ak?+ y(k*+g?)}—ig®](N +ick+Tk?) +k° FIG. 1. The instability growth rate Re for the zero solution in
-0 (18) the physical mode[Egs. (10) and (11)] vs the longitudinal and
- transverse perturbation wave numb&rand g. The values of the

for the physical model10), (11). The stability condition Parameters are=0.2, y=0.05,¢=-1.0, andl'=0.55.

states that both solutions of the quadratic equatidi6s,

(17), or (18) must satisfy the inequality remain negative too. Thus, the zero solution to E#6) and

(11) is stable in the same parameter region in which it was

R (k,q)]<0 (19 found to be stable in the 1D systefb), (2) in Ref. [8].
In the phenomenological model, the zero solution is also
at all the real values df andq. stable in a certain parametric region. However, no simple

As it was already mentioned, the zero solution in the for-relation of the stability condition to that in the 1D system can
mal model(8), (9) is always unstable, which can be shown asbe found in this model.
follows: in the case whek is small, whileq is ~O(1), the
two roots of Eq.(16) can be expanded as IV. THE PERTURBATION THEORY FOR
TWO-DIMENSIONAL SOLITARY PULSES

A(K)=—ick—Tk?*+---, A,=iq%/k+ak?®+---. ) _
(20) Both the physical and phenomenological models reduce
to a zero-order system by settimg= y=1=0, while keep-
Obviously, the second root in EO) yields instability. ing an arbitrary value of. This zero-order system is conser-

The zero solution may be stable in the physical and phevative, consisting of the KP-I equation coupled to an extra
nomenological models. Although the direct check of the condinear one,
dition (19) for Egs.(17) and(18) at all real values ok andq
with the four free parameters is a formidable algebraic prob- (Ut UUF Uy Ux)x= Uyy,  UrtCoyx=Uy.  (21)
lem, it is possible to link the stability condition for the physi- ) ] ) )
cal system to that which was studied in detail for the 1D L0oOoking for a solution to Eqe21) in the form of a soliton
system (1), (2) in Ref. [8]. An algebraic transformation traveling at a constant velocityin the x direction, so that
shows that, if the condition Re(k)]=<0 holds at all real _ _ : _
values ofk in Eqg. (8) of Ref. [8], then the inequality uGy.H=u(gy) oy, =v(sy) with §=x—s(téz)
Rd N (k,q)]=<0 is true at all real values df andq in Eq.
(18), or, in other words, the stability of the zero solution in we immediately conclude that, as in the 1D case, for such a
the 1D case guarantees its stability in the 2D case for theo|ution we have
physical model. However, rather than following formal alge-
bra, it is easier to understand this result from Fig. 1, which v(&€,y)=(c—s) tu(¢y). (23
shows a 3D plot of the instability growth rate Revs k and
q for a set of typical values of the parameters. ObviouslyWith regard to the relatiori23), an exactsolution to Egs.
whenk is large, the stability is secured by the higher-order(21) giving a 2D weakly localized solitofflump” ) is
dissipative term in Eq(10). The most dangerous case is that 5
whenk andq are relatively small. It can be seen from Fig. 1 U(Ey)= 241+cs—s’)
that the growth rate, considered as a functiom,cdttains its ' c—s
maximum value agj=0 if k is very small. Ask increases,
two additional local maxima of the growth rate appear atwhere
nonzerog, and they may be greater than the local maximum

. . _2 — 2
at g=0. However, since the local maximum g0 be- 7= l+cs—s v, i= [l+cs—s ¢
comes more negative dsincreases, the two side maxima c—s ' c—s '
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FIG. 2. An example of the inelastic collision between two stable lump-type solitons with different velocities, simulated within the
framework of the zero-order conservative syst@h with c=0. Theu andv fields prior to the collisioratt=0) are shown in panel®)
and (b), and after the collisiortatt=40), in panelgc) and(d). The initial velocities of the two solitons amg=2.0 ands,=—0.8.

22— 243 [es_peciallyZ py panel @)]. Far fro_m this resonant case, a
W({z)=——7> 5 (25)  typical collision (see an example in Fig.) 3s also strongly
[z°+{°+3] inelastic, but in this case the result may be regarded, in the
) ] o first approximation, as the fusion of two solitons into one.
This solution exists in the case To check the accuracy of the results produced by the di-
2 rect simulations of the 2D equations, including those dis-
1+cs—s >0 (26) played in Figs. 2 and 3 and in the following section, the
c—s simulations were repeated with the number of points increas-

ing. For instance, Figs. 2 and 3 were obtained in a 2D do-
Note that, in contrast to the lump soliton solutions of themain of 256x 256 points; repeating the same simulations

KP-I equation proper, which may only have positive veloci-wjth 512x512 points, we had obtained the same pictures,
ties, the solitong24) may also move in the negative direc- without any visible difference.

tion, provided that the velocity satisfies the conditi@6). In Next, we restore the terms with the coefficientsy, and
the particular case=0, this condition means that either 1" as small perturbations, with the aim to predict, at the first
>1, or —1<s<0. order of the perturbation theory, which solutions will be se-

We have checked by direct simulations of EG&l) that  |ected from the family of the lump solitor{&4) found in the
all the Iump-type SP solutions are stable within the framezero_order Syster‘(ﬂ]_)_ As it is Suggested by the ana|ysis of
work of the unperturbed equatio(1). We have also simu- the 1D systen{8], it is convenient to choose the relative
lated catch-up and head-on collisions between two lumpselocity, S=c—s, as a parameter of the family.
pulses with different velocities. The results Clearly show that As in the 1D case, we select Stationary pu|ses1 using the
the collisions arenelastic hence, contrary to the KP-l equa- palance condition for the net field momentum,
tion, the conservative systeff1) is not an exactly integrable
one. An example of the head-on collision between two lump-
type SPs with velocities=2.0 ands= — 0.8 is shown in Fig. 1 [+ +ee
Zy.pThe inelastic character of the interaction is obvious.g P= Qﬁx dxﬁw dy[u*ooy) +oiy)l (27

In fact, the collision shown in Fig. 2 is not quite generic,
as it is generated by an initial configuration in which the
massN of thev component, see E¢15), is almost zero which is a dynamical invariant of the conservatii@ero-
vanishes exactly if the initial velocity of the second soliton isorden system[the masse$15) cannot be used for this pur-
—0.756 instead of- 0.8, which is the case in Fig)2n this  pose, as they remain dynamical invariants in the full dissipa-
case, a resonance probably occurs, resulting in the generatitime modeld. The dissipative and gain terms give rise to the
of an additional pair of solitons, which is suggested by Fig. 2following exact balance equations for the momentum:
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ufx.y)

A= O=NWAOION

64
X 96 158 0

FIG. 3. The inelastic collision in the conservative syst@t) with c=0 in the case when the initial velocities of the two solitons are
s;,=2.0 ands,= —0.5. The panels have the same meaning as in Fig. 2, with a difference that the final state is display&sl at

dP_ [r= [+ 2 2 .2 2

Tl J, dXJ, dyleug— y(ugtuy) —Tous] (28)
in the physical systeniL0), (11), and

dP +oo +oo 5 )

ar= f_ dxf_ dy[ auZ— (Ut Uyy)?—Tv] (29

in the phenomenological systeth3), (14).

Substituting the unperturbed exact soluti@4) into the
equilibrium conditiondP/dt=0, which follows from Eq.
(28) or (29), we cast the equilibrium condition in the form

r 1 1\2
Cl a’*? C*&‘FE *Cz C*5+S :0, (30)

the equilibrium equation(30) yields the following cubic
equation fors (wherea=aly, T=TI/7):

5%+ (0.46a—c) 8%~ 5—0.46 =0, (34)

5%+ (0.41a—c) 5%~ 6—-0.41'=0, (35)

for the physical and phenomenological models, respectively.
Note that these equations have the same general form as the
one that selects equilibrium values of the paraméter the
1D system investigated in RdB].

Physical roots of Eq(34) or (35 are defined as those
which are not only real, but also satisfy the conditi@®).
The physical roots select particular lump-type SPs, from the
family of lump solitons of the zero-order system, which re-
main steady pulses in the presence of the perturbations. As in

where, for both the physical and phenomenological systemshe 1D model, the existence of at least two physical roots is

w2
ag) ’ 3D

+ oo + oo
C]_Ef de dg

and the constar@, is defined differently for the two models:

+o (e 2w\ [ ow\?
(phys)_ i _
c jﬂgdzﬁwdg (,9§2> +((9z>

v e [Pw gPw)?
C(then): jﬁx dZJ’iw d((agz—i- (922> . (33)

Numerical computation of the integrals vyield<;
=0.34708, CPV9)=0.75984, andC{P""=0.85770. Then,

. (32

necessary for one pulse to be staltlee other one, with a
smaller value of the amplitude, is then automatically un-
stable [8]. A numerical solution of Eqs34) and(35) veri-

fies that both equations have exactly two physical roots in a
broad parametric region, while three physical roots can never
be found. Interestingly, the velocities corresponding to these
two physical roots are both positive, i.e., a stable lump SP
cannot move in the negativedirection.

Regions in the parameter plane,{") in which exactly
two physical roots have been found are shown, for
=0.05, in Figs. 4 and 5 for the physical model, witk-0
andc=—1, respectively, and in Fig. 6 for the phenomeno-
logical model withc=—1. These regions are bounded by
two solid lines in Figs. 4—6. Beneath the lower solid line,
Eq. (34) or (35) has three real roots, but no more than one of
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FIG. 4. The stability region of the zero solution, and the region

inside which two physical roots exist for E(4) with y=0.05 and
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0 1 1 1

04 0.5

FIG. 6. The stability region of the zero solution of the 1D model
(1), (2) and the region inside which two physical roots exist for Eq.

¢=0. The zero solution is stable above the dashed line, and insid&5 wheny=0.05 andc=—1. The solid and dashed lines have the

the region bounded by two solid lines, E84) produces two physi-
cal solutions.

same meaning as in Fig. 4.

in the following section. Despite the absence of an overlap-
ping region in Fig. 6, we have to check the conditi@8) for

them is physical, and above the upper solid line, two physi£g, (17), i.e., the stability of the zero solution in the phenom-
cal roots bifurcate into a pair of complex ones, leaving noenplogical model, point by point, since the stability of the

physical roots.

zero solution in the 1D model does not guarantee the stabil-

The dashed line is the border above which the zero SOlUi‘ty of the zero solution in the phenomeno|ogica| System, see

tion is stable in the 1D modé€ll), (2), hence it is also stable

the preceding section.

in the 2D physical model, according to the results reported in - The same analysis can be performed for values of the loss
the preceding section. As seen in Fig. 4, in the parametgsarametery other than 0.05, which was fixed in the above

plane (,I') of the physical system witk=0, there is no

consideration. The results show that the variationygdro-

overlapping between regions where the zero solution igjyces little change in terms of the expected SP stability re-
stable, and where the perturbation theory selects two physkion. On the other hand, the group-velocity mismatchf-
cal solutions for the 2D pulses, but a narrow overlappingfects the stability region significantly. We had numerically

region is found in the same model for=—1, see Fig. 5. It

found that there is no stability region in both the physical and

is expected that stable lump-type SPs exist inside this narrofhenomenological model far=0. Then, by inspecting the
region, which is confirmed by direct simulations, as reportettegion of negative, it was found that there is a critical value

1.2 T T T T

0.8

=06

0.4

0.2

0.2

0.25

0.15

0.3
o

FIG. 5. The expected stability region for the solitary pulses in
the parametric planeq(I") for y=0.05 andc=—1.0. The solid
and dashed lines have the same meaning as in Fig. 4.

C.r Such that stable pulses become possiblefoc,,. In the
physical modelc.~ —0.8.

To conclude the analytical consideration, it is necessary to
stress that the stability conditions obtained here are only nec-
essary ones. Obtaining a full set of sufficient stability condi-
tions might be possible within the framework of a rigorous
spectral analysis of the full system linearized around the
pulse solution, which was dorien a numerical formfor the
1D Benney(KS-KdV) equation in Refs[7]. Extending this
analysis to the two-component 2D case is an extremely dif-
ficult problem, which is beyond the scope of the present
work. Nevertheless, numerical results reported in the follow-
ing section strongly suggest that the necessary stability con-
ditions, which were obtained above by means of the simple
analytical methods, are, most probably, sufficient for the sta-
bility of the 2D pulses.

V. DIRECT SIMULATIONS OF THE TWO-DIMENSIONAL
SOLITARY PULSES

To check the predictions made by the above analysis for
both the physical and phenomenological models, via direct
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u(x.y) u(x.y)

SO PWRUION

v(x,y) v(x,y)
05 05 r
0 0
-0.? 3 -0.5
1L Sl
'1_'2 I 15}
64 -2 64

X 48 0 X 48

64

64 0

FIG. 7. A stable lump-type solitary pulse in the physical model, FIG. 8. A stable lump-type solitary pulse in the phenomenologi-
found as a result of long numerically simulated evolution in thecal model, found the same way as the pulse shown in Fig. 7 for the
casea=0.2, y=0.05,c=—1.0, andl'=0.55. The panel¢a) and same values of the parameters. The pat@land(b) have the same
(b) show established shapes of thanduv fields, respectively. meaning as in Fig. 7.

numerical simulations, we have upgraded the implicit pseuPU!S€; given by Eq(34) for the same values of the param-
dospectral scheme, which was developed previously for thEt€rS: iSAanar=7.38 andsgnar=1.35. Thus, the numerical re-
1D model(1), (2) (see Appendix in Ref[8]), to a scheme sults match the theoret|_cal pr_eo_llpnon We_II. _

capable of dealing with 2D models. It it relevant to mention ~ ©On the other hand, if the initial amplitude is too small,
that results obtained with a rather coarse gidk=Ay e.g.,A;=0.89 (50=0.7), the pulse dgcays to zero, which is
=0.5, and relatively large time stepst=0.1, remained vir- natl_JraI too, as the stable zero solution has its own attraction
tually unchanged if reproduced with an essentially finer grig®@sin- Note that for the secorigmalle) steady-state pulse,

and smaller time step. The initial conditions were taken adVhich is expected to play the role of the separatrix between
the lump-soliton solutions of the zero-order system, but withthe attraction basins of the stable pulse and zero solution, the

arbitrarily modified values of the amplitude, in order to perturbation theory predicts, in the same case, the amplitude

check whether strongly perturbed pulses relax to stable onefanar=1.26, so it seems quite natural that the initial pulses
i.e., whether the stable pulses aéractors with Ap=1.96 andA,=0.89 relax, respectively, to the stable
Collecting data produced by the systematic simulations, ipulse and to zero.
has been found that, for the physical model, stable lump-type For the phenomenological model, no definite stability re-
SPs do exist and are stabderywhereinside the stability ~ gion for the pulses has been found above; instead, the stabil-
region in the @,I") parameter plane, which was predicted by ity of the zero solution at each point inside the region
the analytical perturbation theory, see Fig. 5. Moreover, albounded by the solid lines in Fig. 6 should be checked sepa-
the stable pulses were found to be strong attractors indeed. /&tely. For instance, the zero solution is found to be stable at
typical lump-type SP withh=0.2, y=0.05,c=—1.0, and the parameter pointa{=0.2, I'=0.55) in Fig. 6. At this
I'=0.55 is displayed in Fig. 7. The initial-state pulses se-point, the two physical roots of E¢35) are 2.073 and 1.786.
lected as mentioned above definitely relax to this single stalhe amplitudes of the corresponding solitons predicted by
tionary lump-type SP, provided that the initial amplitullg  the perturbation theory am,,,~4.72 andA,,~1.81, re-
of theiru component exceeds 1.5. For instance, starting witlspectively; the one with the larger amplitude may be stable
the initial amplitudesA,=1.96 andA,=13.33[the corre- according to the general principle formulated above. Simu-
sponding values of the unperturbed solitons’ velocity gye lations demonstrate that, indeed, there is a stable 2D pulse
=0.8 andsy=2.0, see Eq(24)], a lump-type SP develops with a shape very close to the predicted one, all the initial
with the values of the amplitudé\,,,=7.11 andA,,, States in the form of the conservative-model lump, whose
=7.16, and velocities,,,,=1.32 ands,,,=1.33, respec- amplitude exceeds 2.0, relaxing to this stable SP. Figure 8
tively, by the timet=400. Meanwhile, the analytical predic- shows the shapes of theandv components of the SP &t
tion for the amplitude and velocity of the presumably stable=400, generated by the initial configuration taken as the
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soliton of the zero-order systerf21) with the amplitude is, quite naturally, based on the Kadomtsev-PetviastkiH)
13.33. The amplitude of the thus obtainedomponents is equation supplemented by loss and gain terms. A model with
about 5.14, the discrepancy with the analytical predictiorthe dissipative terms of the Newell-Whitehead-Segel type
being less than 9%. was derived in a consistent way for the weakly 2D case. The
It was also found that all the initial lump pulses whose derivation was outlined for a particular physical system, a
amplitude is less than 1.6 decay to zero. This fact complie§ownflowing liquid film carrying a surfactant that diffuses
well with the expectation that the secofminaller-amplitude ~ @long its surface. It was argued that, in fact, the derived
steady-state pulse, predicted by the perturbation theorynodelis generic, therefore it also applies, for instance, to the
whose amplitude is 1.81, ought to be the separatrix betweef€scription of interfacial waves in a two-layered flowing film
the attraction basins of the stable pulse and zero solution iAnd double-front flames in a gaseous mixture. Another
the phenomenological system. model, which may apply to a more isotropic situation, was
The simulations also show that, even if the zero backPut forward as a semiphenomenological one. Both models
ground is unstable, lump-type SPs may be quite stable whe#PnSist of the generalized KP-I equation with gain and I_oss
the integration domaitisupplemented by periodic boundary terms linearly coupled to an extra equation of the advection-
conditions in bothx andy) is not very large. An explanation diffusion type. The_addltlonal Im_ear equation stablhz_es the
given in Ref.[8] for a similar “overstability” effect found in ~ System’s zero solution, thus paving the way to the existence
the 1D model, which is based on the suppression of nasceff completely stable 2D localized solitary pulses, which are

perturbations by the pulse periodically traveling around thePbjects of an obvious physical interest. Treating the losses
domain, applies to the 2D case as well. and gain as small perturbations, and employing the balance

more stable lump-type SPs were also carried out. Unlike théondition of the equilibrium between the losses and gain may
1D system(1), (2), in which stable bound states of two and selept two steady-state 2D solitons from .thelr continuous
three pulses were easily fourifl] (and unlike a physically family, which was found, in an exact anglytmal for.m,lln the
relevant 2D model of a different type, which follows the absence of the loss and gdthe exact solitons are similar to
pattern of the Zakharov-Kuznetsov equatj@d] and will be ~ the “lump” solutions of the KP-I equation When the zero
considered elsewherebound states of pulses hamet been ~ Solution is stable and, simultaneously, two lump-type pulses
found in both the physical and phenomenological system&€ picked up by the balance equation for the momentum, the
based on the KP-I equation. Actually, this fact may be benigrPulse with the larger value of amplitude is expected to be
for the experimental observation of the 2D pulses, as ther&t@ble in the infinitely long system, while the other pulse
will be no competition with multihumped structures that Must be unstable, playing the role of a separatrix between the

These predictions have been completely confirmed by direct
VI. CONCLUSION simulations for both the physical and phenomenological sys-

tems. Another noteworthy finding is that, unlike their 1D
In this work, we have extended the 1D stabilizedcounterpart, both KP-based 2D systems do not generate
Kuramoto-Sivashinsky system to the 2D case. The 2D modedtable bound states of pulses.

[1] M.J. Ablowitz and P.A. ClarksonSolitons, Nonlinear Evolu- SIAM (Soc. Ind. Appl. Math. J. Appl. Math.58, 1246(1998);
tion Equations and Inverse Scatterii@ambridge University H.-C. Chang and E.A. Demekhin, J. Fluid Mec880, 233
Press, Cambridge, UK, 1981 (1999.

[2]1.S. Aranson and L. Kramer, Rev. Mod. Physi, 99 (2002. [8] B.A. Malomed, B.-F. Feng, and T. Kawahara, Phys. Re§4E

[3] D.J. Benney, J. Math. Phy$5, 150 (1966 046304(200:])

(4] T‘_ Kawahara and S. Toh, Phys. I_:Iuids, 1636 (198_5; in [9] J. Schumacher and B. Erckhardt, Phys. Rev63: 046307
Pitman Monographs and Surveys in Pure and Applied Math- (2001): A. Das and J. Mathew, Comput. Flui@8, 533(2001).

ematics Vol. 43: Nonlinear Wave Motipedited by A. Jeffery [10] B.B. Kadomtsev and V.I. Petviashvili, Sov. Phys. Dokb

e, 1900 Ephic G ey O Reseu shEA 531570 00, A, ek SSR02 75315701
piegel, mhys. o s n [11] A.A. Nepomnyashchy and M.G. Velarde, Phys. Flugls187

wards, Phys. Fluids A, 506 (1993; C.I. Christov and M.G. )
Velarde, Physica (36, 323 (1995. (1994); G. Huang, M.G. Velarde, and V.N. Kudryavtsev, Phys.
Rev. E57, 5473(1998.

[5] A. Oron, S.H. Davis, and S.G. Bankoff, Rev. Mod. Phgs,

931 (1997. [12] L.A. Segel, J. Fluid Mech38, 203 (1969; A.C. Newell and
[6] S. Toh and T. Kawahara, J. Phys. Soc. J).1257 (1985 J.A. Whiteheadibid. 38, 279 (1969.

H.-C. Chang, Phys. Fluid9, 3142(1986; T. Kawahara and [13] J. Topper and T. Kawahara, J. Phys. Soc. 4@n663(1978;

S. Toh, ibid. 31, 2103(1988; H.-C. Chang, E.A. Demekhin, S. Toh, H. lwasaki, and T. Kawahara, Phys. Revi0 5472

and D.I. Kopelevich, Phys. Rev. Left5, 1747(1995. (1989.

[7] H.-C. Chang, E.A. Demekhin, and D.I. Kopelevich, Physica D[14] S. Melkonian and S.A. Maslowe, Physicada, 255(1989.
97, 353(1996); H.-C. Chang, E.A. Demekhin, and E. Kalaidin, [15] M.F. G&z, Physica D123 112(1998.

056311-9



FENG, MALOMED, AND KAWAHARA PHYSICAL REVIEW E 66, 056311 (2002

[16] V.I. Petviashvili, JETP Lett32, 619 (1980 [Zh. Eksp. Teor.  [18] G.I. Sivashinsky, Annu. Rev. Fluid Mect5, 179(1983.

Fiz. 32, 632(1980]. [19] Y. Kortsarts, |. Kliakhandler, L. Shtilman, and G.I. Sivashin-
[17] G. Joulin and P. Clavin, Combust. Flar@&, 389 (1975; L. sky, Q. Appl. Math.56, 401(1998.

Pelaez and A. Cian, SIAM (Soc. Ind. Appl. Math. J. Appl. [20] V.E. Zakharov and E.A. Kuznetsov, Sov. Phys. JE3&P 285

Math. 45, 503 (1985; J. Pelaezibid. 47, 781(1987). (1974 [Zh. Eksp. Teor. Fiz66, 594 (1974].

056311-10



